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Abstract—Compressive sensing is a new signal acquisition tech-
nology with the potential to reduce the number of measurements
required to acquire signals that are sparse or compressible
in some basis. Rather than uniformly sampling the signal,
compressive sensing computes inner products with a randomized
dictionary of test functions. The signal is then recovered by
a convex optimization that ensures the recovered signal is
both consistent with the measurements and sparse. Compressive
sensing reconstruction has been shown to be robust to multi-level
quantization of the measurements, in which the reconstruction
algorithm is modified to recover a sparse signal consistent to
the quantization measurements. In this paper we consider the
limiting case of 1-bit measurements, which preserve only the sign
information of the random measurements. Although it is possible
to reconstruct using the classical compressive sensing approach
by treating the 1-bit measurements as ±1 measurement values,
in this paper we reformulate the problem by treating the 1-
bit measurements as sign constraints and further constraining
the optimization to recover a signal on the unit sphere. Thus the
sparse signal is recovered within a scaling factor. We demonstrate
that this approach performs significantly better compared to the
classical compressive sensing reconstruction methods, even as the
signal becomes less sparse and as the number of measurements
increases.

I. INTRODUCTION

Compressive sensing is a new low-rate signal acquisition
method for signals that are sparse or compressible [1]–[5].
The fundamental premise is that certain classes of signals,
such as natural images or communications signals, have a
representation in terms of a sparsity inducing basis (or sparsity
basis for short) where most of the coefficients are zero or small
and only a few are large. For example, smooth signals and
piecewise smooth signals are sparse in a Fourier and wavelet
basis, respectively.

Recent results [1], [5] demonstrate that sparse or compress-
ible signals can be directly acquired at a rate significantly
lower than the Nyquist rate. The low-rate acquisition process
projects the signal onto a small set of vectors, a dictionary,
that are incoherent with the sparsity basis. The signals can
subsequently be recovered using a greedy algorithm or a
linear program that determines the sparsest representation
consistent with the acquired measurements. The quality of the
reconstruction depends on the compressibility of the signal, the
choice of the reconstruction algorithm, and the incoherence of
the sampling dictionary with the sparsity basis. One of the
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most useful results is that randomly generated dictionaries are
universal in the sense that, with very high probability, they
are incoherent with any fixed sparsity basis. This property
makes such dictionaries very desirable for compressive sensing
applications.

To date most of the compressive sensing literature does
not explicitly handle quantization of the compressive sensing
measurements. Most of the literature models quantization as
norm-limited additive noise on the measurements. Although
this treatment is sufficient in the case of high-rate quantization,
it is extremely conservative if the measurements are coarsely
quantized to very low bit-rates.

In this paper we examine the reconstruction from com-
pressive sensing measurements quantized to one bit per mea-
surement. Quantization to 1-bit measurements is particularly
appealing in hardware implementations. The quantizer takes
the form of a comparator to zero, an extremely inexpensive
and fast hardware device. Furthermore, 1-bit quantizers do not
suffer from dynamic range issues. If the analog side of the
measurement system is properly implemented then the sign of
the measurement remains valid even if the quantizer saturates.
The appeal of 1-bit quantization is evident in the success of
1-bit Sigma-Delta converters, which use such quantizers at the
expense of very high sampling rate [6], [7].

The main contribution of this paper is treating the quantized
measurements as sign constraints on the measurements as
opposed to values to be matched in the reconstruction in a
mean squared sense. Since the signs of the measurements do
not provide amplitude information of the signal, any positive
scalar multiple of the reconstructed signal, including the zero
signal, is consistent with the measurements. The signal can
only be recovered within that scalar factor. The reconstruction
formulation we provide resolves the ambiguity by imposing a
unit energy constraint on the reconstructed signal and recover-
ing the signal on the unit sphere. This constraint significantly
reduces the reconstruction search space, thus significantly
improving the reconstruction results.

An important principle we use is consistent reconstruction
which states that the reconstructed signal should be consistent
with the quantized measurements. In other words, if the
reconstructed signal is to be measured and quantized with the
same system then it should produce the same measurements
as the ones at hand. Consistent reconstruction is very effective
in increasing the reconstruction performance for quantized
frame expansions [8]. We demonstrate that the same principle
significantly improves the reconstruction from compressive
sensing measurements.



The next section provides a brief background on compres-
sive sensing, quantization, and consistent reconstruction. The
aim is to establish the notation and serve as a quick reference.
Section III-A introduces the 1-bit measurement model and
Section III-B formulates the consistent reconstruction problem.
Section III-C presents an algorithm to compute the solution
and reconstruct the signal. Section IV presents simulation
results that validate the formulation and demonstrate signif-
icant performance increase over classical compressive sensing
reconstruction. Conclusions are presented in Section V.

II. BACKGROUND

A. Compressive Sensing

Compressive sensing is a new sampling and reconstruction
method for signals that are known to be sparse or compressible
in some basis [1], [5]. Without loss of generality, we assume
a signal x in an N -dimensional vector space. The signal is
K-sparse in a sparsity-inducing basis {bi} if there are at
most K non-zero coefficients {αi} in the basis expansion
x =

∑
i αibk—compactly denoted Bα. The signal is K-

compressible if it is well approximated by the K most
significant coefficients in the expansion.

The signal is sampled using M measurements with the
measurement vectors φi, i = 1, . . . ,M :

yi = 〈x, φi〉. (1)

We compactly denote (1) using y = Φx = ΦBα, where y is
the vector of measurements and Φ is the measurement operator
which models the measurement system.

For the remainder of this paper we assume the signal is
sparse or compressible in the canonical basis, i.e., B = I . It
is straightforward to apply the subsequent results to signals
sparse in any basis by substituting Φ = ΦB as the measure-
ment system and treating α, instead of x, as the sparse signal
to be reconstructed.

Classical sampling theory dictates that for robust linear
reconstruction of any signal x, the set φi should form a Riesz
basis or a frame. This implies that at least N measurements are
necessary to recover the signal. Compressive sensing, on the
other hand, allows the use of only M = O(K log(N/K))�
N non-adaptive measurements to robustly acquire and recon-
struct K-sparse or compressible signals. The reconstruction in
this case ceases to be linear.

The reconstruction from y amounts to determining the
sparsest signal that explains the measurements y. The strictest
measure of sparsity is the `0 pseudonorm of the signal,
defined as the number of non-zero coefficients of the signal.
Unfortunately the `0 pseudonorm is combinatorially complex
to optimize for. Instead compressive sensing enforces sparsity
by minimizing the `1 norm of the reconstructed signal, ‖x‖1 =∑

i |xi|. In several cases, including the classical compressive
sensing reconstruction methods, minimizing the `1 norm has
been theoretically proven equivalent to minimizing the `0
pseudonorm of the signal [9], [10].

Reconstruction from compressive sensing measurements is
thus achieved by solving the minimization problem:

x̂ = argmin
x
‖x‖1 s.t. y = Φx, (2)

where ‖x‖1 =
∑

i |xi| is the `1 norm of the signal. In [3] it is
shown that with proper selection of the measurement system
Φ, (2) exactly recovers the signal.

Specifically, exact recovery requires that the measurement
vectors {φi} are sufficiently incoherent with the sparsity basis
{bi}. Incoherence, as defined in [11], can be guaranteed with
very high probability if the measurement matrix Φ is drawn
randomly from a variety of possible distributions. The number
of measurements necessary to guarantee recovery using a
random measurement system is M = O(K log(N/K)).

B. Measurement Quantization

Quantization is usually modeled as measurement noise,
denoted using n, added to the measurements:

y = Q(Φx) = Φx + n, (3)

where Q(·) is the quantizer and n is energy-limited to some
ε depending on the quantization accuracy:

‖n‖2 =

(∑
i

‖ni‖2
)1/2

≤ ε. (4)

For a uniform linear quantizer with quantization interval ∆,
ε ≤

√
M∆2/12.

In the presence of norm-limited measurement noise such as
quantization, it has been shown that robust reconstruction can
be achieved by solving:

x̂ = argmin
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ε. (5)

In this case, the reconstruction error norm is bounded by ‖x−
x̂‖2 ≤ Cε, where the constant C depends on the properties of
the measurement system Φ but not on the signal [4].

In practice, the optimization in (5) is often relaxed to:

x̂ = argmin
x
‖x‖1 +

λ

2
‖y − Φx‖22, (6)

which is often more efficient to solve algorithmically (for
some examples, see [12]–[15]). The solution path of (5) as
ε decreases is the same as the solution path of (6) as λ
increases. However, the exact correspondence of λ and ε—
and, therefore, the appropriate value for λ in (6)—cannot be
known in advance before the solution is obtained.

C. Consistent Reconstruction

Consistent reconstruction enforces the requirement that the
solution should be consistent with all our knowledge about
the signal and measurement process. In the case of quantized
measurements, this implies that if the reconstructed signal is
re-measured using the measurement system Φ and quantized
at the same accuracy then the measurements should be exactly
the same as the original measurements used to reconstruct the



signal. In [8] it is shown that consistent reconstruction signif-
icantly improves the reconstruction performance in quantized
frame representations.

Although in the general case of norm-limited measurement
noise the reconstruction in (5) is consistent with the measure-
ments, this is not the case if the measurement noise is due to
quantization. Specifically, in the case of uniform linear quan-
tization, all noise components have magnitude |ni| ≤ ∆/2,
which implies that consistent reconstruction should produce a
signal that satisfies:

|(Φx̂− y)i| ≤
∆
2

. (7)

In the case of 1-bit quantization, the quantizer is most often
implemented as a comparator to a voltage level `, usually
zero. In this case consistent reconstruction should require that
measurements of the reconstructed signal should be on the
same side of the voltage level as the measurements obtained
from the measurement system:

(Φx̂)i

yi=+1
≷

yi=−1
`, (8)

where yi = ±1 is the quantized measurement. This is
equivalent to:

sign ((Φx̂)i − `) = yi. (9)

The remainder of this paper examines how the principle
of consistent reconstruction can be applied to significantly
improve the reconstruction from compressive sensing mea-
surements quantized to one bit. In our development we assume
` = 0.

III. 1-BIT COMPRESSIVE SENSING MEASUREMENTS

A. Measurement Model

As we describe above, each measurement is the sign of the
inner product of the sparse signal with a measurement vector
φi:

yi = sign(〈φi,x〉). (10)

It follows that the product of each quantized measurement with
the measurement is always non-negative:

yi sign(〈φi,x〉) ≥ 0. (11)

The measurements are compactly expressed using:

y = sign(Φx), (12)

where y is the vector of measurements, Φ is a matrix repre-
senting the measurement system and the 1-bit quantization
function sign(·) is applied element-wise to the vector Φx.
Using matrix notation, (11) is compactly expressed using:

YΦx ≥ 0, (13)

where Y = diag(y) and the inequality is applied element-
wise.

B. Consistent Reconstruction

For consistent reconstruction from 1-bit measurements we
treat the measurements as sign constraints that we enforce in
the reconstruction to recover the signal. In the reconstruction
we enforce the model using the `1 norm as a sparsity measure.

If x is consistent with the measurements then so is ax for
all 0 ≤ a < 1. Since ‖ax‖1 = a‖x‖1 < ‖x‖1, a minimization-
based reconstruction algorithm that only requires consistency
with the measurements will drive the solution to x = 0. To
enforce reconstruction at a non-trivial solution we need to
artificially resolve the amplitude ambiguity. Thus, we impose
an energy constraint that the reconstructed signal lies on the
unit `2-sphere:

‖x‖2 =

(∑
i

x2
i

)1/2

= 1. (14)

Note that this constraint significantly reduces the optimiza-
tion search space. This reduction plays an important role in
improving the reconstruction performance.

The sparsest signal on the unit sphere that is consistent with
the measurements, as expressed in (13), is the solution to:

x̂ =argmin
x
‖x‖1 (15)

s.t. YΦx ≥ 0
and ‖x‖2 = 1.

To enforce the constraint we relax the problem using a cost
function f(x) that is positive for x < 0 and zero for x ≥ 0
and a relaxation parameter λ:

x̂ =argmin
x
‖x‖1 + λ

∑
i

f ((YΦx)i) (16)

s.t. ‖x‖2 = 1,

Assuming that the original problem (15) is feasible, as λ tends
to infinity (15) and (16) have the same solution.

The algorithm we introduce in this paper minimizes (16)
for f(x) = x2

2 · u(−x), where u(x) is the unit step function.
In other words, f(x) is a one-sided quadratic penalty if x is
negative and zero otherwise:

f(x) =
{

x2

2 , x < 0
0, x ≥ 0.

(17)

The convexity and smoothness of this function allows the use
of gradient descent and fixed-point methods to perform the
minimization.

For notational convenience, in the remainder of this paper
we use g(x) = ‖x‖1 to denote the `1 norm part of the
cost function, and f̄(YΦx) to denote the one-sided quadratic
penalty

f̄(x) =
∑

i

f (xi) , (18)

such that the cost function is equal to:

Cost(x) = g(x) + λf̄(YΦx). (19)



C. Reconstruction Algorithm

We employ a variation of the fixed point continuation
(FPC) algorithm introduced in [13]. Specifically, we introduce
two modifications. The first modifies the computation of the
gradient descent step in [13] such that it computes the gradient
of the one-sided quadratic penalty in (17) projected on the unit
sphere ‖x‖2 = 1. The second introduces a renormalization
step after each iteration of the algorithm to enforce the
constraint that the solution lies on the unit sphere.

These modifications are similar to the ones introduced in
[16] to stabilize the reconstruction of sparse signal from their
zero crossings. The similarity is not coincidental. Both sign
measurements and zero crossings information eliminate ampli-
tude information from the signal. The main difference between
the two problems is that measurements of zero crossings
are signal-dependent, whereas compressive measurements are
signal-independent. Although it is possible to reformulate the
reconstruction from zero-crossings as reconstruction from 1-
bit measurements, this reformulation is beyond the scope of
this paper.

The algorithm computes and follows the gradient of the cost
function in (19). If the minimization is not constrained on the
sphere, then the gradient of the cost at the minimum is 0:

Cost′(x) = 0 = g′(x) + λ(YΦ)T f̄ ′(YΦx) (20)

⇒ g′(x)
λ

= −(YΦ)T f̄ ′(YΦx), (21)

where

(g′(x))i =

 −1, xi < 0
[−1, 1] , xi = 0

+1, xi > 0
(22)

and (
f̄ ′(x)

)
i
=
{
−xi, xi ≤ 0

0, xi > 0 . (23)

It follows that if the sphere constraint is introduced then the
gradient of the cost function at the minimum is orthogonal
to the sphere. Thus, a gradient descent algorithm followed by
renormalization has the minimum of (19) on the unit sphere
as a fixed point.

The iterative steps to reconstruct the signal are presented
in Algorithm 1. The algorithm is seeded with an initial signal
estimate x̂0 and a gradient descent step size δ/λ. At every
iteration the algorithm computes the gradient of the one-sided
quadratic in Step 3, projects it on the sphere in Step 4 and
descends on that gradient in Step 5. Step 6 is a shrinkage step
using the soft threshold shrinkage function shown in the solid
line in Figure 1. Step 7 renormalizes the estimate to have unit
magnitude and the algorithm iterates from Step 2 until the
solution converges.

As discussed in [13], the shrinkage Step 6 is interpreted
as a gradient descent on the `1-norm component of the cost
function. Specifically, for |xi| ≥ δ/λ the magnitude of the
coefficient is reduced by δ/λ, which is the expected behavior

Algorithm 1 Renormalized Fixed Point Iteration
1) Initialization:

Seed: x̂0 s.t. ‖x̂0‖2 = 1,
Descent Step Size: δ
Counter: k ← 0

2) Counter Increase:
k ← k + 1

3) One-sided Quadratic Gradient:
fk ← (YΦ)T f̄ ′(YΦxk−1)

4) Gradient Projection on Sphere Surface:
f̃k ← fk − 〈fk,xk−1〉xk−1

5) One-sided Quadratic Gradient Descent:
h← x̂k−1 − δf̃k

6) Shrinkage (`1 gradient descent):

(u)i ← sign ((h)i) max
{
|(h)i| −

δ

λ
, 0
}

, for all i,

7) Normalization:
x̂k ←

u
‖u‖2

8) Iteration: Repeat from 2 until convergence.

δ/λ

δ/λ

-δ/λ

-δ/λ

δ/λ

δ/λ

Fig. 1: `1 shrinkage function (soft threshold).

of a gradient descent. For |xi| ≤ δ/λ the discontinuity at 0
zero makes the gradient descent set the coefficient to 0.

The reconstruction algorithm should be executed with λ
large enough such that the relaxed minimization (16) con-
verges to the constrained minimization in (15). Unfortunately,
the larger the value of λ, the smaller the descent step δ/λ.
Furthermore, the value of λ that is sufficiently large is not
known in advance of the algorithm.

Both issues are resolved by wrapping the algorithm in an
outer iteration loop that executes the algorithm using a small
value λ0 until convergence and then restarts the algorithm with
a higher value λi = cλi−1, c > 1 using the previous estimate
as a seed for the next execution. The outer loop terminates
once the solution from the current iteration is not significantly
different from the solution of the previous iteration.

Since the minimization is performed on the unit sphere, the
problem is not convex. Therefore, the algorithm cannot be
guaranteed to converge to the global minimum. Our simula-
tions have demonstrated that a good heuristic is to initialize
the algorithm using

x̂0 = Φ†y, (24)
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Fig. 2: Reconstruction performance from 1-bit measurements.

where Φ† is the pseudoinverse of Φ. The solution to

x̂0 = argmin
x
‖x‖1 +

λ

2
‖Φx− y‖22 (25)

for some small value of λ, also proved to be a good initial-
ization heuristic. Random initialization of the algorithm also
converges with extremely high probability.

IV. SIMULATION RESULTS

In this section we present simulation results that demon-
strate the performance of the algorithm. For the remainder of
this section we use randomly generated sparse signals of length
N = 512. The signals have varying sparsity K, with the K
nonzero coefficents uniformly selected among all the possible
N signal coefficients. Each nonzero coefficient is drawn from
a standard normal distribution. The measurement matrix Φ
has i.i.d. coefficients also drawn from a standard normal
distribution. The results we present are robust to variations
of the parameters.

Figure 2 demonstrates the performance of our algorithm
compared to the optimization in (5), implemented using the
LARS algorithm with the LASSO modification [12]. The
output of both algorithms was normalized to have unit power,
and compared to the normalized original signal. The results
of our algorithm are presented using solid curves, labeled
‘1-bit CS’. The results of the classical compressive sensing
reconstruction are presented using dashed curves. The figure
plots the reconstruction error in dB as a function of the number
of measurements—which is also the number of bits used to
represent the signal—for various values of K.

The plots demonstrate the performance advantage of consis-
tent reconstruction on the unit sphere. At low sparsity rates the
improvements are significant, reaching 20dB for very sparse
signals. Even as the density of the signals increases, recon-
struction on the unit sphere outperforms classical compressive
sensing, especially as the number of measurements increases.

Note that we performed the simulations even for M > N .
This regime transcends the classical compressive sensing goal

of few measurements. Still, it is important to study the perfor-
mance since additional measurements improve performance in
the presence of quantization. This is especially useful if the
cost of the system is in the quantization accuracy instead of
the number of measurements.

V. CONCLUSIONS

Our results demonstrate that reconstruction from 1-bit com-
pressive sensing measurements can be significantly improved
if the appropriate measurement model is used in the recon-
struction. Specifically, 1-bit measurements eliminate amplitude
information, and therefore the signal can only be recovered
within a positive scalar factor. Constraining the reconstruction
to be on the unit sphere resolves this ambiguity and sig-
nificantly reduces the reconstruction search space. Similarly,
treating each measurement as a constraint instead of a value
to be matched in a mean-squared sense allows us to exploit
consistent reconstruction principles. Our results demonstrate
that both contributions significantly improve the reconstruction
performance from 1-bit measurements.

A significant advantage of using the measurements as
constraints is that the formulation of the reconstruction be-
comes entirely non-parametric. Specifically, the minimization
programs in (5) and (6) require knowledge of ε or λ at the
initialization of the problem. On the other hand, (15) contains
no such parameter. Although we introduce a parameter λ
when relaxing the problem in (16), this parameter in never
explicitly required in the execution of the algorithm. Instead
the algorithm increases λ until the solution converges to the
solution of (15).

Last, but not least, we note that the focus of our formulation
is on number of bits instead of number of measurements.
Compressive sensing systems reduce the number of mea-
surements required to recover the signal. In the presence
of coarsely quantized measurements, the performance of a
compressive sensing system might not be sufficient for the
application. Performance can be increased by incorporating
more measurements or using a more precise quantizer. The
tradeoff depends on the cost of more refined quantization
versus the cost of additional measurements. Our approach
is mostly applicable in the case where measurements are
inexpensive whereas precision quantization is expensive.
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